《Nature Communications》:可调控组织和性能的合金增材制造技术

发布者:浙江工业大学激光先进制造研究院发布时间:2023-12-04浏览次数:10

在材料学中,人们常常采用机械和热工艺相结合的方法,在塑造材料的形状的同时,调节材料的微观结构和机械性能。比如,可以通过控制金属锻造和挤压过程中的机械应变量,利用位错的积累来硬化材料,或者在热处理 (HT) 产生微观结构的再结晶,这是一种消除缺陷的晶粒成核和生长的过程,可以提高材料的韧性和各向同性。然而,这种传统的加热和敲击方法在使用现代增材制造(AM)技术时就不再适用了。增材制造可以将材料逐层叠加,制造出具有复杂几何形状的近净成形零件。由于微观结构和几何形状在增材制造过程中几乎同时形成,因此很难在不改变零件外形的前提下调控其微观结构。

为了解决这一难题,新加坡南洋理工大学机械与航空航天工程学院的Huajian Gao教授和剑桥大学工程系的Matteo Seita博士进行了创新性的研究,展示了如何通过控制激光粉末床熔融(LPBF)技术产生的合金的位错密度和热稳定性,来规避这一限制。他们通过控制合金的凝固组织,实现了在不使用机械变形的情况下,通过设计热处理来产生再结晶。在特定的条件下,这种策略可以设计和成形复杂的微观结构,将具有不同微观结构特征和性能的再结晶区域和非再结晶区域相结合。该研究还发现,这种微观结构的异质性可能有助于提升材料的性能,相比于单一的微观结构更优。这项研究展示了一种先进的方法,能够同时直接控制多个微观结构特征的演化,从而拓展了具有优化的机械和物理性能的工程材料的设计空间。

这些突破性的研究成果已经发表在顶级学术期刊《Nature Communications》上,论文题为《Additive manufacturing of alloys with programmable microstructure and properties》。

1.316L不锈钢( SS316L )的激光粉末床熔融( LPBF )可控热稳定性。

2.通过改变激光扫描间距来调节再结晶的驱动力。

3.通过重熔来调控凝固组织。

4.316L不锈钢( SS316L )激光粉末床熔融过程中的X射线衍射实验。